summary refs log tree commit diff
path: root/source/xi_lib/ir.ml
blob: b611916949dad6908fca22711a9cbd92cca46703 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
type reg
  = REG_Tmp of int
  | REG_Hard of int
  | REG_Spec of int

let string_of_reg = function
  | REG_Tmp i -> Format.sprintf "%%tmp%u" i
  | REG_Hard i -> Format.sprintf "%%hard%u" i
  | REG_Spec i -> Format.sprintf "%%spec%u" i

let is_spec_reg = function
  | REG_Spec _ -> true
  | _ -> false

let is_tmp_reg = function
  | REG_Tmp _ -> true
  | _ -> false

module RegSet = Set.Make(struct 
  type t = reg

  let compare = compare
  end)

module RegMap = Map.Make(struct 
  type t = reg

  let compare = compare
  end)


module RegGraph = Graph.Imperative.Graph.Concrete(struct 
(* module RegGraph = Mygraph.MakeUndirected(struct *)
  type t = reg

  let hash = Hashtbl.hash

  let equal a b = compare a b = 0

  let compare a b = compare a b
  end)

type expr
  = E_Reg of reg
  | E_Int of Int32.t


let reglist_of_expr = function
  | E_Reg r -> [r]
  | E_Int _ -> []

type label
  = Label of int

module LabelSet = Set.Make(struct 
  type t = label
  let compare = compare
  end)

type procid
  = Procid of string


type cond
  = COND_Eq
  | COND_Ne
  | COND_Lt
  | COND_Gt
  | COND_Le
  | COND_Ge

let string_of_cond = function
  | COND_Eq -> "eq"
  | COND_Ne -> "ne"
  | COND_Lt -> "lt"
  | COND_Gt -> "gt"
  | COND_Le -> "le"
  | COND_Ge -> "ge"


type instr
  = I_Add of reg * expr * expr
  | I_Sub of reg * expr * expr
  | I_Div of reg * expr * expr
  | I_Rem of reg * expr * expr
  | I_Mul of reg * expr * expr
  | I_And of reg * expr * expr
  | I_Or of reg * expr * expr
  | I_Xor of reg * expr * expr
  | I_LoadArray of reg * expr * expr
  | I_StoreArray of expr * expr * expr
  | I_LoadMem of reg * expr * expr
  | I_StoreMem of expr * expr * expr
  | I_Concat of reg * expr * expr
  | I_Neg of reg * expr
  | I_Not of reg * expr
  | I_Move of reg * expr
  | I_Length of reg * expr
  | I_NewArray of reg * expr
  | I_Call of reg list * procid * expr list * reg list
  | I_Set of reg * cond * expr * expr  
  | I_LoadVar of reg * int
  | I_StoreVar of int * expr
  | I_LoadStack of reg * int
  | I_StoreStack of int * expr
  | I_StackAlloc of Int32.t
  | I_StackFree of Int32.t
  | I_Use of reg list
  | I_Def of reg list


type terminator =
  | T_Return of expr list
  | T_Branch of cond * expr * expr * label * label
  | T_Jump of label 

let labels_of_terminator = function
  | T_Branch (_, _, _, lt, lf) -> [lt; lf]
  | T_Jump l -> [l]
  | _ -> []

type block = instr list

module LabelGraph = Graph.Imperative.Digraph.ConcreteBidirectional(struct 
(*module LabelGraph = Mygraph.MakeBidirectional(struct *)
  type t = label
  let compare = compare
  let hash = Hashtbl.hash
  let equal a b = a = b
  end)

module ControlFlowGraph = struct

  type graph = LabelGraph.t 

  type t = Cfg of
  { graph: graph
  ; blockmap: (label, block) Hashtbl.t
  ; terminatormap: (label, terminator) Hashtbl.t
  ; entry: label
  ; exit: label
  }

  let graph (Cfg {graph; _}) = graph

  let _allocate_block graph =
    let i = LabelGraph.nb_vertex graph in
    let l = Label i in
    LabelGraph.add_vertex graph l;
    l

  let remove (Cfg {graph; terminatormap; blockmap; _}) v =
    LabelGraph.remove_vertex graph v;
    Hashtbl.remove terminatormap v;
    Hashtbl.remove blockmap v

  let allocate_block (Cfg {graph; blockmap; terminatormap;  _}) =
    let i = LabelGraph.nb_vertex graph in
    let l = Label i in
    LabelGraph.add_vertex graph l;
    Hashtbl.replace blockmap l [];
    Hashtbl.replace terminatormap l (T_Return []);
    l

  let create () =
    let graph = LabelGraph.create () in
    let blockmap = Hashtbl.create 513 in
    let terminatormap = Hashtbl.create 513 in
    let entry = _allocate_block graph in
    let exit = _allocate_block graph in
    let _ = LabelGraph.add_vertex graph entry in 
    let _ = LabelGraph.add_vertex graph exit in 
    Cfg {graph; blockmap; terminatormap; entry; exit}

  let successors (Cfg {graph; _}) v = 
    LabelGraph.succ graph v

  let predecessors (Cfg {graph; _}) v = 
    LabelGraph.pred graph v

  let entry_label (Cfg {entry; _}) = entry

  let exit_label (Cfg {exit; _}) = exit

  let blockmap (Cfg {blockmap;_}) = blockmap

  let blocklist cfg =
    let blockmap = blockmap cfg in
    let f xs (k,v) = (k,v) :: xs in
    let blocks = Seq.fold_left f [] (Hashtbl.to_seq blockmap) in 
    let blocks = List.sort compare blocks in
    blocks

  let terminator (Cfg {terminatormap; entry; exit; _}) v =
    assert (entry <> v);
    assert (exit <> v);
    Hashtbl.find terminatormap v

  let blocklist2 cfg =
    let blockmap = blockmap cfg in
    let f xs (k,v) = (k,v,terminator cfg k) :: xs in
    let blocks = Seq.fold_left f [] (Hashtbl.to_seq blockmap) in 
    let blocks = List.sort compare blocks in
    blocks

  let blocklabels cfg =
    let blockmap = blockmap cfg in
    let f xs k = k :: xs in
    let blocks = Seq.fold_left f [] (Hashtbl.to_seq_keys blockmap) in 
    let blocks = List.sort compare blocks in
    blocks


  let block (Cfg {blockmap; entry; exit; _}) v =
    assert (entry <> v);
    assert (exit <> v);
    Hashtbl.find blockmap v

  let block_safe (Cfg {blockmap; entry; exit; _}) v =
    assert (entry <> v);
    assert (exit <> v);
    Hashtbl.find_opt blockmap v


  let terminator_safe (Cfg {terminatormap; entry; exit; _}) v =
    assert (entry <> v);
    assert (exit <> v);
    Hashtbl.find_opt terminatormap v

  let set_block (Cfg {blockmap; entry; exit; _}) v body =
    assert (entry <> v);
    assert (exit <> v);
    Hashtbl.replace blockmap v body

  let set_block2 (Cfg {blockmap; terminatormap; entry; exit; _}) v body terminator =
    assert (entry <> v);
    assert (exit <> v);
    Hashtbl.replace blockmap v body;
    Hashtbl.replace terminatormap v terminator

  let set_terminator (Cfg {terminatormap; entry; exit; _}) v body =
    assert (entry <> v);
    assert (exit <> v);
    Hashtbl.replace terminatormap v body

  let connect (Cfg {graph; exit; entry; _}) a b =
    assert (entry <> b);
    assert (exit <> a);
    LabelGraph.add_edge graph a b

  let labels (Cfg {graph; _}) = 
    LabelGraph.fold_vertex (fun x xs -> x::xs) graph []

end

type procedure = Procedure of
  { procid: procid
  ; cfg: ControlFlowGraph.t
  ; mutable frame_size: int
  ; formal_parameters: int
  ; allocate_register: unit -> reg
  }

let cfg_of_procedure (Procedure {cfg; _}) = cfg

let formal_parameters_of_procedure (Procedure {formal_parameters; _}) = formal_parameters

let allocate_register_of_procedure (Procedure {allocate_register; _}) = allocate_register

let allocate_frame_slot (Procedure procid) =
  let slot = procid.frame_size in
  procid.frame_size <- procid.frame_size + 1;
  slot


let procid_of_procedure (Procedure {procid; _}) = procid

let frame_size_of_procedure (Procedure {frame_size; _}) = frame_size


type program = Program of
  { procedures: procedure list
  ; externals: procid list
  }

let procedures_of_program (Program{procedures; _}) = procedures

let externals_of_program (Program{externals; _}) = externals